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ABSTRACT 
 
As lasers become more pervasive, the dangers posed by laser radiation to the human retina have 
increased.  Computer aided modeling of laser tissue interaction for energies deposed in the retina 
allows for researchers to simulate parameter ranges where exposure can cause damage.  While 
this approach has been studied using a variety of methods, one of the most referenced models has 
been the Thompson-Gerstman melanin granule model.  Due to limited computing resources at 
the time, the original FORTRAN version of this model was implemented as a stand-alone serial 
code and was only able to model single-pulse exposures.  A new C++ version of the Thompson-
Gerstman model has been implemented, which expands both the functionality and portability of 
the method.  The source type has been expanded to include multi-pulse as well as single pulse.  
Additionally, the functions developed by Thompson and Gerstman are now part of a library that 
can be accessed through other modeling software.  
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1 INTRODUCTION 
 
Laser radiation in the visible and near infrared (400-1400 nm) region of the spectrum poses a 
unique risk to the human eye.  A collimated laser beam incident on the cornea will be focused to 
a small spot on the retina with a transmission between the cornea and retina of approximately 
90% at 550 nm [1].  As light passes through the retina, the layers of tissue will absorb energy, 
which could lead to damage.  Damage to the retina most likely occurs in the retinal pigmented 
epithelium (RPE) layer where 50% of 600 nm light is absorbed [2].  RPE cells in the pigment 
layer, located at the back of the retina, may be irreparably damaged if laser radiation deposition 
is sufficiently intense.  Damage to cells in the RPE layer may result in loss of vision sensing in 
the affected region of the retina. 
 
Damage can be caused by three distinct mechanisms: photothermal, photomechanical, and 
photochemical.  Photothermal damage occurs when the temperature of tissue rises to levels 
where protein denaturation or enzyme inactivation occurs.  This type of damage is produced with 
a long-pulse duration (t > 10 µs) where substantial energy is deposited slowly.  Photomechanical 
damage occurs under short and ultrashort pulses (10 ρs < t < 10 µs) where energy is deposited 
quickly, causing mechanical stress or micro-cavitation within the tissue and cells. 
 
An accurate computational model of the laser-tissue interaction, which accounts for energy 
absorption and thermal diffusion, could be used to predict damage thresholds based on the 
properties of the laser source.  The relationship between beam characteristics such as 
wavelength, pulse duration, beam profile, and spot size could then be compared to damage 
thresholds and lesion size, which would give insight into exposure thresholds in regimes where 
no laser damage studies have been conducted.  This tool would have the added benefit of 
reducing the dependence on animal studies for determining damage thresholds. 
 
The topic of modeling photothermal injury to the retina has been evaluated by a wide range of 
authors [3-8].  While several possible simulations have emerged to model the laser-tissue 
interaction in the retina, a “granular model” has advantages over other models, which try to 
numerically solve the heat equation assuming homogeneous retinal layers and homogeneous heat 
absorption.  At visible and near-infrared wavelengths most optical absorption in the RPE is 
within the intracellular melanin-impregnated granules known as melanosomes.  For pulses 
shorter than 0.1 ms, the assumption of homogeneous temperature within layers breaks down, as 
heat near the energy absorbing melanosomes is much greater than in surrounding tissue.  
 
A number of researchers have developed granular models [9-13] in order to address the issue of 
non-homogeneous heating of the RPE.  The most advanced of the granular models, and the one 
most often referenced by other researchers since its development, is the Thompson-Gerstman 
melanin granule model [14].  Instead of solving for temperature across the domain through finite 
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element or finite difference meshing, the Thompson-Gerstman model instead solves the analytic 
heat profile of a single melanosome, then calculates the temperature at any given point in the 
medium through superposition of thermal energy.  This report documents the creation of a C++ 
implementation of the Thompson-Gerstman model by Austin Kane, which replaces, and 
improves on, the original FORTRAN implementation created in 1996 by Dr. Randy Thompson. 
The C++ implementation should allow for greater utility and easier integration into other laser-
tissue damage models. 
 

2 MODELING LASER-TISSUE INTERACTION 

2.1 Thompson-Gerstman Model 
An analytic expression for heated spheres in a homogeneous infinite medium, originally derived 
by Goldenburg in the 1950’s [9,10], forms the basis of the Thompson-Gerstman granular model.  
A granular model can also be modified to include photomechanical damage from bubble 
formation near the granules, which has been presented in other models [11]. However, the 
Thompson-Gerstman model considers only photothermal effects.  While many granule models 
assume melanosomes of zero diameter to reduce the complexity of the analytical expression, this 
assumption breaks down for ultra-fast pulses where calculating the temperature rise near 
granules becomes inaccurate [12].  The Thompson-Gerstman model has melanosomes of finite 
size, where the analytical solution of the heat equation has been derived at the granule center, at 
radial distances from the center that are inside the granule, at the granule surface and at radial 
distances that are outside the granule. 
 
The model developed by Thompson and Gerstman [13,14] makes several simplifying 
assumptions about material properties and about the nature of tissue-laser interaction in the 
retina.  First, it assumes melanosomes are homogenous spheres randomly distributed in an 
infinite volume of liquid water.  Second, it assumes absorption of laser energy takes place only 
within melanin granules and that this energy absorption is homogeneous.  Third, the melanin 
granules also have the thermal properties of water.  This assumption can be removed in favor of 
a more accurate solution [9], but then thermal superposition would no longer be valid. 
 
The governing equation for heat transfer from a single granule with spherical symmetry is shown 
in Equation (2.1).   
 

𝟏𝟏
𝒓𝒓
𝝏𝝏𝟐𝟐

𝝏𝝏𝒓𝒓𝟐𝟐
(𝒓𝒓𝒓𝒓) + 𝑨𝑨𝒐𝒐(𝒓𝒓,𝒕𝒕)

𝒌𝒌
= 𝟏𝟏

𝜶𝜶
𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

  (2.1) 
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The heat equation is expressed in terms of r, the scalar distance from the granule center [cm], T 
is temperature [◦C], t is time [sec], α is the thermal diffusivity of the medium [cm2/sec], k is the 
thermal conductivity [J/cm ◦C sec], and Ao is a source term defined in Equations (2.2) and (2.3).   
 

𝐀𝐀𝐨𝐨 = 𝟑𝟑𝐈𝐈𝐨𝐨
𝟒𝟒𝟒𝟒𝛕𝛕𝐩𝐩

�𝟏𝟏 − 𝟏𝟏
𝟐𝟐𝛂𝛂𝐦𝐦𝟐𝟐 𝐚𝐚𝟐𝟐

�𝟏𝟏 − 𝐞𝐞𝐞𝐞𝐞𝐞(−𝟐𝟐𝟐𝟐𝛂𝛂𝐦𝐦) (𝟏𝟏 + 𝟐𝟐𝛂𝛂𝐦𝐦𝐚𝐚)�� (2.2) 

 

𝐀𝐀𝐨𝐨(𝐫𝐫, 𝐭𝐭) = �𝐀𝐀𝐨𝐨  𝐢𝐢𝐢𝐢 𝟎𝟎 ≥ 𝐫𝐫 ≥ 𝐚𝐚;𝟎𝟎 ≥ 𝐭𝐭 ≥ 𝛕𝛕𝐩𝐩
𝟎𝟎   𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨                          

 (2.3) 

 

The variable Io is the average retinal fluence [J/cm2], a is the granular radius [µm], τp is the pulse 
length [sec], and αm is the wavelength-dependent melanosome absorption coefficient [cm-1]. 
 

2.2 FORTRAN Code 
The FORTRAN implementation of the Thompson-Gerstman model provided computational 
analysis of damage given a set of conditions and parameters that could be approximated from 
data gathered experimentally.  A rectangular coordinate system was used to define the locations 
of melanin granules and to reference the spatial points at which temperature rises were 
computed. The origin of the coordinate system is defined as the center of the rectangular volume 
shown in Figure 1.   

 

 
 

Figure 1:  A Profile of the Distribution of Melanin Granules About the RPE Layer 
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The structure of the FORTRAN code can be described in three steps: 

 

 
 

Figure 2:   Flow Diagram of the FORTRAN Thompson-Gerstman Model 

 

Table 1:  Initial Values Needed in FORTRAN Version of Thompson-Gerstman Model 

Description Value 
X domain [-20,20] µm 
Y domain [-20,20] µm 
Z domain [-7,7] µm 
Number of melanin granules 186 
Simulation time [0,2] ms 
Corneal fluence 3 x 10-5 J/cm2 
Pulse duration 3 x 10-6 s 
Thermal diffusivity of the medium 0.00133 cm2/s 
Thermal conductivity of the medium 0.00556 J/cm-C-sec 
Beam diameter at cornea 0.7 cm 

 
 
 

1) Input Parameters: The initial conditions needed for the temperature 
calculations, as well as a set of example values, are shown in Table 1.  
Values related to simulated domain and physical parameters are used 
to calculate other variables needed for initialization.  These 
parameters are stored in “Config Files” shown in Figure 2. 
 

2) Thermal Solution:  A temperature value is calculated for each grid 
point the user specifies over an interval of time such that gradients in 
thermal diffusion have significantly decreased.  The time-temperature 
values are obtained by a superposition of the thermal energy 
contributed by each granule.  The position, time, and temperature data 
is then saved in a text file shown in Figure 2. 

 
3) Damage:  Since the aim of the model is to determine if damage has 

occurred under laser radiation exposure, time-temperature data alone 
are insufficient.  The Arrhenius damage integral was selected for its 
usefulness in modeling thermal damage to biological tissue.  The 
damage data are saved as a “Raw Damage File” shown in Figure 2. 
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2.3 Source Types 
The type of source exposure can also be designated as one of three options: gaussian, top-hat, or 
annular.  The gaussian profile is most commonly used as the assumed profile of most laser 
exposures and represents an ideal beam.  A top-hat profile has a single region of high intensity 
surrounded by a region of zero intensity without the smooth transition seen in the gaussian 
profile.  An annular beam resembles a ring or donut-shaped beam similar to the top-hat profile 
with a small region of zero intensity in the center of the beam profile. 
 
Examples of thermal results using the parameters in Table 1 are shown in Figure 3.  The false 
color images show temperature rise in an x-y slice at the beam focus. 
 

 
 

Figure 3:  Thermal Profiles Resulting from (a) Gaussian Beam, (b) Top-hat Beam and  
(c) Annular Beam 

 
 

2.4 Damage 
While it is true that tissue heated to the vaporization point of water will likely cause damage, it is 
also possible for damage to occur at lower temperatures.  Experiments indicate that temperature 
elevations of just 10̊ C can cause cellular damage if maintained for a long enough time.  The 
Arrhenius damage integral approach [15] assumes damage occurs by an active rate process 
described by 

Ω(𝑟𝑟) = 𝐴𝐴 ∫ exp �− 𝐸𝐸
𝑅𝑅𝑅𝑅(𝑟𝑟,𝑡𝑡)�𝑑𝑑𝑑𝑑.

𝑡𝑡𝑓𝑓
𝑡𝑡𝑖𝑖

 (2.4) 

The variable Ω represents the damage level, E is the activation energy [energy per mole], R is 
the gas constant, T is the temperature, and ti through tf represents the lower and upper limit of 
time evaluated.  The constants 

 𝐴𝐴 = 1.3 𝑥𝑥 1099    �1
𝑠𝑠
� 

 and 

 𝐸𝐸 = 1.5 𝑥𝑥 105      � 𝑐𝑐𝑐𝑐𝑐𝑐
𝑚𝑚𝑚𝑚𝑚𝑚

� 
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were found [16] to give a simple value for Ω to determine if damage had occurred. 

 �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑             Ω ≥ 1
𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑       Ω < 1 

Using the time-temperature data of the exposure simulation, the Arrhenius integral is solved 
numerically by Simpson’s rule.  An example of a damage spot calculated using this method is 
shown in Figure 4.  The damage spot was calculated by the Arrhenius integral for exposure to a 
gaussian beam with input parameters given in Table 1. 
 

 
Figure 4:  Damage Spot from Gaussian Beam 

 

3 IMPROVEMENT OF THOMPSON-GERSTMAN MODEL 

3.1 C++ Implementation 
Several improvements were suggested to the original FORTRAN implementation of the 
Thompson-Gerstman model.  First, the method needed to be converted to a language which 
allowed for added usability and easy integration into other programs.  Second, the temperature 
data should be passed directly to the damage integral instead of reading and writing time-
temperature data to file between each step.  Third, the user should be able to provide a range of 
values as input parameters instead of requiring modifying the input file for each run.  Finally, an 
option of multiple-pulse exposures could be added to expand the application of this model 
beyond the single-pulse realm.  With these criteria, the C++ language was selected to build the 
new implementation of the model. 
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Figure 5:  Absolute Temperature Difference 

A validation of the C++ implementation was performed by direct comparison to the thermal 
results given by the FORTRAN code.  This thermal results comparison, shown in Figure 5, 
produced maximum differences in temperature around 0.08 °C.  This gives a maximum relative 
percent error of 0.04%.  This difference is likely due to minor differences between how the two 
languages handle float point precision.   
  

3.2 C++ Code Structure 
 

 
 

Figure 6:  Top Down Overview of C++ Version of Thompson-Gerstman Model 

 

 The C++ version, through use of modular 
design, was able to significantly streamline the 
process of generating damage files. Many of 
these changes reflected the intended usage and 
computing power available for the new 
implementation.  
 

 This version of the Thompson-Gerstman model 
was intended to be a modular tool fit for 
integration into other computational models.  
This adds usability to the standalone code 
which can now be ported as a small function 
library.  The new top-down approach of the 
structure is shown in Figure 6. 
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3.3 Variable Input Parameters 
The new implementation has the ability to iterate the thermal solver algorithm over any number 
of different parameters such as corneal fluence, laser power, number of points, and other input 
parameters of significance.  This modularized code might be used to optimize input parameters 
in the model to produce effects which match experimental values.  Figure 7 shows the change in 
temperature in the medium at the beam focus shortly after a single pulse.  A range of corneal 
fluence values between 3.0 – 4.5 µJ/cm2 was provided while holding other variables constant.  
As expected, a linear relationship between corneal fluence and temperature exists directly after 
the pulse. 
 

 
 

Figure 7: Temperature Rise at Beam Focus 

 
 

3.4 Multi-Pulse Capability 
While meaningful analysis can be performed by varying parameters for a single-pulse exposure, 
multiple-pulse trains present several additional parameters to compare damage thresholds.  Due 
to the unique way the Thompson-Gerstman model handles temperature changes from a single 
pulse, implementing a multi-pulse function simply requires additional iterations of the 
superposition temperature solver.  This allows for variance in number of pulses as well as for the 
time between pulses. 
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Figure 8: Multi-Pulse Validation 

Validation of this method was performed by direct comparison to another multiple-pulse 
computational solver, which has been independently verified.  Figure 8 shows the direct 
comparison of the multi-pulse Thompson-Gerstman algorithm (green) next to the verified 
TempBuilder (red) thermal profile.  These results show good agreement, which supports the 
validity of the new C++ Thompson-Gerstman code for multiple-pulse exposures. 
 

4 DISCUSSION 
With the growing number of laser systems being used by both military and civilians, laser 
radiation damage to the retina is a growing concern.  Damage to tissue and loss of vision can 
occur under a variety of beam conditions, wavelengths, and exposure times.  Developing a set of 
laser safety standards requires testing exposure conditions to define safe limits of laser use.  
Simulated modeling of the parameter ranges where exposure conditions cause photothermal 
damage will better help researchers predict damage. 
 
The Thompson-Gerstman model is able to give an estimate of whether damage has occurred by 
making several assumptions that are not physically valid, but may provide model results that are 
a reasonable match to actual biological damage data.  First, the model is not given a thermal 
boundary condition, so the exact rate of thermal energy transmitted to surrounding tissue is 
neglected.  For exposures greater than 1 second, or long simulation times where the diffusion 
term dominates the heat equation, this assumption would likely cause the model’s temperature to 
be lower than expected.  Additionally, since photomechanical and photochemical damage are not 
included in the model, short pulses and temperatures at or near vaporization should be ignored as 
non-valid.  However, since photothermal damage covers a wide range of possible conditions, 
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other damage mechanisms are not needed as long as the model is used in a valid laser pulse 
range. 
 
The positive aspects of this model lie mostly in its numerical simplicity and speed of simulation.  
Since computing temperature is simplified using superposition of analytic solutions, long lists of 
simultaneous equations or numerical methods of solving partial differential equations are 
unnecessary.  As a result, the computational effort is reduced to several loops of simple 
arithmetic.  This simplifies what could be an exhaustive parameter study into a series of non-
intensive computational steps.   
 

5 CONCLUSIONS 
The work which began with the FORTRAN implementation of the Thompson-Gerstman model 
has been expanded to a C++ modular model that possesses a function library capable of 
interfacing with other laser-tissue damage models.  This modular model has improved the 
usability of the method for conducting damage threshold research.  The granular model described 
here and detailed in their paper [14] has proven to be a fast and efficient method at predicting 
retinal damage using a wide range of input parameters.  Additional developments of multi-pulse 
functionality and solving exposures over large ranges of input parameters greatly increase the 
application and research potential of this method.  Direct comparison validation has been 
performed on the results of the FORTRAN and C++ codes, here showing good agreement 
between the two computational codes.  Results from this model could be compared to known 
biological results, which would possess insight into thresholds in regimes where no laser damage 
studies have been conducted.  This tool would have the added benefit of reducing the complexity 
and sensitivity of attaining results when depending on animal studies for determining damage 
thresholds. 
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7 APPENDIX: THOMPSON GERSTMAN MODEL C++ 
 

7.1 Top Level Function 
 
#include<math.h> 
#include<ctime> 
#include <boost/test/unit_test.hpp> 
#include<iostream> 
#include<fstream> 
#include<vector> 
#include<string> 
using namespace std; 
#include "TGlib.cpp" 
#include <boost/property_tree/ptree.hpp> 
#include <boost/property_tree/ini_parser.hpp> 
#include<omp.h> 
 
int main(int argc, char* arg[]){ 

BigTherm Therm(arg[1]); 
Therm.TakataDamage(); 
return 0; 

} 
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7.2 Header File 
 
#include<vector> 
#include <boost/property_tree/ptree.hpp> 
#include<string> 
using namespace std; 
 
class granule { 
public: 
 
//---------- These parameters are given in .inp1 files------------ 
 double a; //Granular radius 
 
//---------- End parameters given by .inp1 files------------- 
 
//---------- These parameters are givin in .inp2 files ----- 
 double pulsedur; //pulse duration in seconds 
 double alpha; // Thermal Diffusivity of medium in cm**2/sec 
 double cond; // Thermal conductivity of medium in j/cm-Csec 
 
//---------- End Parameters from .inp2 files -------------------- 
//used in (orig,in,surf,out,vanilla)temp functions, calculated in  
//bigthrem from other input parameters 
 
 double A0;  
 double OutTemp(double r, double t); 
 double SurfTemp(double t); 
 double InTemp(double r, double t); 
 double OrigTemp(double t); 
 double Temp(double r, double t); 
 double MelTemp(double r, double t); 
 double tmin, PulseSep; 
 int PulseNum; 
 vector<double> PulseVec; 
}; 
 
class BigTherm { 
 public: 
  BigTherm(char* configfilename); 
  vector<int> elapsed, tarray, guess; 
  int k, s, improf, n,TempFlag, SeedFlag; 
  int xnum, ynum, znum, tnum, melnum, rnum; 
  vector<int> test; 
  double BoxLength, BoxDepth, MelDens; 
  double xmin, xmax, xsize; 
  double ymin, ymax, ysize; 
  double zmin, zmax, zsize; 
  double tmin, tmax, tsize; 
  vector< vector< double > > Pos; 
  vector< double >  weight, PulseVec; 
  vector< vector< double > > VecTemp;  
  vector< double > rsize; 
  double  dx; 
  double ran1, ran2, ran3; 
  double irr,Tbody, absorb; 
  double Temp, x, y, z, t, r; 
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  double sigma, corspot, Focus; 
  double spotsize,MelTemp,trans,dobs; 
  double Qtot, Qlost, Qkept; 
  granule granny; 
  boost::property_tree::ptree configfile; 
  string MelPlacementFile; 
  string TempOutputFile; 
  string DamageOutputFile; 
  double BigThermTempAt(double x, double y, double z, double t); 
  // this function is to build the function again if you change any 

// variables that affect weight or vectemp 
  void ReConstruct(void); 
  void BigTherm2(void); 
  void BigTherm2(double outputxmin, double outputxmax,int outxnum, 
double outputymin, double outputymax, int outynum, double outputzmin, double 
outputzmax, int outznum); 
  int PulseNum; 
  double PulseSep; 
  void TakataDamage(void); 
  int TakataDamageAt(double x, double y, double z); 
  int DamageInfo; 
  int numthreads; 
}; 
 
void takatadamage(char* configfilename); 
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7.3 Library File 
 
#include<math.h> 
#include"TGlib.h" 
#define _USE_MATH_DEFINES 
#include<limits> 
#include<vector> 
#include<fstream> 
#include <boost/property_tree/ptree.hpp> 
#include <boost/property_tree/ini_parser.hpp> 
#include<string> 
#include<iostream> 
#include"omp.h" 
#include <time.h> 
using namespace std; 
double Gmma(double aa, double bb, double cc){ 
if(bb == 0.0) { 
//-------------gigamma function --------------------------- 
if(cc > 30.0) 
 cc = 30.0; 
//-------------gammaser function ------------------- 
//-----modified(un-normalized) version of GSER from numerical recipes ---- 
/* 
Modification of GSER is ignoring (removing) the "gln" variable, and the 
function that calculates it gammln(a). this is used in the sum evaluating the 
exponential for del < sum *EPS, as subtraction by the natural log of the 
complete gamma function inside the exponential acts the same as dividing by 
the same value. 
*/ 
 const int ITMAX = 100; 
 const double EPS = numeric_limits<double>::epsilon(); 
 double sum, del,ap; 
 if(cc <= 0.0){ 
  if(cc<0.0){ 
   return -1; 
   //fail in a mysterious way 
  }  
  else 
   return 0.0; 
 } 
 else{ 
  ap = aa; 
  del = sum = 1.0/aa; 
  for(int n = 0; n <ITMAX; n++){ 
   ap += 1.0; 
   del *= cc/ap; 
   sum += del; 
   if(fabs(del) < fabs(sum)*EPS){ 
    return sum*exp(-cc+aa*log(cc)); 
   } 
  } 
 } 
} 
} 
 
double LagL(double a, double b, double c){ 
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double d, gm1, gm2, Gamma, answer; 
d = -c; 
gm1 = -0.5; 
gm2 = 0.0; 
Gamma = Gmma(gm1,gm2,d); 
answer = - (Gamma * sqrt(d) * (1.0 - 2*c/3) + (2*exp(c))/3)/M_PI; 
return answer; 
} 
 
//calculates the temperature outside the granule 
double granule::OutTemp(double r, double t){ 
double Outterm[4], gm[2], lg[2]; 
double OutTheta; 
gm[0] = 0.5; 
gm[1] = 0.0; 
lg[0] = 1.5; 
lg[1] = -0.5; 
double gamma = Gmma(gm[0],gm[1],(((-a + r)*(-a + r))/(4.0*alpha*t))); 
 Outterm[0] = ((a*t*((sqrt(M_PI)*((-a + r)*(-a + r) + 
2.0*alpha*t))/(2.0*alpha*t) - (2.0*(-a + r)*(0.5*exp((-((-a + r)*(-a 
+r))/(4.0*alpha*t))) + (sqrt(((-a + r)*(-a +r))/(alpha*t))*(((-a + r)*(-a 
+r)) + 2.0*alpha*t)* gamma)/(4.0*((-a + r)*(-
a+r)))))/(sqrt(alpha)*sqrt(t))))/(sqrt(M_PI))); 
 Outterm[1] = (a*a*a - 3.0*a*a*r + 3.0*a*r*r - (r*r*r) + 6.0*a*alpha*t - 
6.0*alpha*r*t + 
6.0*(alpha*sqrt(alpha))*sqrt(M_PI)*(t*sqrt(t))*LagL(lg[0],lg[1],-((-a + r)*(-
a + r))/(4.0*alpha*t)))/(6.0*alpha); 
 Outterm[2] = (-a*a*a - 3.0*a*a*r - 3.0*a*r*r - r*r*r - 6.0*a*alpha*t - 
6.0*alpha*r*t + 
6.0*(alpha*sqrt(alpha))*sqrt(M_PI)*(t*sqrt(t))*LagL(lg[0],lg[1],(-(a + r)*(a 
+r))/(4.0*alpha*t)))/(6.0*alpha); 
 Outterm[3] = (a*t*((sqrt(M_PI) * ((a + r)*(a + r) + 
2.0*alpha*t))/(2.0*alpha*t) - (2.0*(a + r)* (0.5*exp(-((a + r)*(a + 
r))/(4.0*alpha*t)) + (sqrt(((a + r)*(a + r))/(alpha*t))*((a + r)*(a + r) + 
2.0*alpha*t)*Gmma(gm[0], gm[1], ((a + r)*(a + r))/(4.0*alpha*t)))/(4.0*(a + 
r)*(a + r))))/(sqrt(alpha)*sqrt(t))))/(sqrt(M_PI)); 
OutTheta = alpha*A0*(Outterm[0] - Outterm[1] + Outterm[2] + 
Outterm[3])/(2.0*cond); 
return OutTheta/r; 
} 
 
// calculates temperature on the surface of the granual 
double granule::SurfTemp(double t){ 
double Surffnc[4]; 
double SurfTheta, gm[2], lg[2]; 
gm[0] = 0.5; 
gm[1] = 0.0; 
lg[0] = 1.5; 
lg[1] = -0.5; 
Surffnc[0] = t; 
Surffnc[1] = t*(sqrt(M_PI)*(2.0*a*a + alpha*t)/(alpha*t) - 4.0*a*(0.5*exp(-
(a*a)/(alpha*t)) + sqrt((a*a)/(alpha*t))*(2.0*a*a + 
alpha*t)*Gmma(gm[0],gm[1],(a*a)/(alpha*t))/(4.0*a*a))/(sqrt(alpha)*sqrt(t)))/
(sqrt(M_PI)); 
 
Surffnc[2] = 4.0*(t*sqrt(t))/(3.0*sqrt(M_PI)); 
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Surffnc[3] = -4.0*(a*a*a)/(3.0*alpha*sqrt(alpha)) - 2.0*a*t/sqrt(alpha) + 
sqrt(M_PI)*t*sqrt(t)*LagL(lg[0],lg[1],-((a*a)/(alpha*t))); 
Surffnc[4] = a*alpha*A0*(Surffnc[0] + Surffnc[1])/(2.0*cond) + 
alpha*sqrt(alpha)*A0*(Surffnc[3] - Surffnc[2])/(2.0*cond); 
return Surffnc[4]/a; 
} 
 
// Calculates temperature inside the granual 
double granule::InTemp(double r, double t){ 
double Interm[5], gm[2], lg[2]; 
double Intheta; 
gm[0] = 0.5; 
gm[1] = 0.0; 
lg[0] = 1.5; 
lg[1] = -0.5; 
Interm[0] = r*t; 
Interm[1] = (-a*a*a + 3.0*a*a*r - 3.0*a*r*r + r*r*r - 6.0*a*alpha*t + 
6.0*alpha*r*t + 6.0*alpha*sqrt(alpha)*sqrt(M_PI)*t*sqrt(t)*LagL(lg[0],lg[1],-
((a - r)*(a - r))/(4.0*alpha*t)))/(12.0*alpha); 
Interm[2] = (-a*a*a - 3.0*a*a*r - 3.0*a*r*r - r*r*r - 6.0*a*alpha*t - 
6.0*alpha*r*t + 6.0*alpha*sqrt(alpha)*sqrt(M_PI)*t*sqrt(t)*LagL(lg[0],lg[1],-
((a + r)*(a + r))/(4.0*alpha*t)))/(12.0*alpha); 
Interm[3] = a*t*(sqrt(M_PI)*(((a - r)*(a - r)) + 2.0*alpha*t)/(2.0*alpha*t) - 
2.0*(a - r)*(0.5*exp(-((a - r)*(a - r))/(4.0*alpha*t)) + (a - 
r)/sqrt(alpha*t)*((a - r)*(a - r) + 2.0*alpha*t)*Gmma(gm[0],gm[1],((a - r)*(a 
- r))/(4.0*alpha*t))/(4.0*((a - r)*(a - 
r))))/sqrt(alpha*t))/(2.0*sqrt(M_PI)); 
Interm[4] = a*t*(sqrt(M_PI)*(((a + r)*(a + r)) + 2.0*alpha*t)/(2.0*alpha*t) - 
2.0*(a + r)*(0.5*exp(-((a + r)*(a + r))/(4.0*alpha*t)) + (a + 
r)/sqrt(alpha*t)*(((a + r)*(a + r)) + 2.0*alpha*t)*Gmma(gm[0],gm[1],((a + 
r)*(a + r))/(4.0*alpha*t))/(4.0*((a + r)*(a + 
r))))/sqrt(alpha*t))/(2.0*sqrt(M_PI)); 
Intheta = alpha*A0*(Interm[0] - Interm[1] + Interm[2] - Interm[3] + 
Interm[4])/cond; 
 
return Intheta/r; 
} 
 
double granule::OrigTemp(double t){ 
double Origfnc[3], gm[2], lg[2]; 
gm[0] = 0.5; 
gm[1] = 0.0; 
lg[0] = 1.5; 
lg[1] = -0.5; 
Origfnc[0] = t; 
Origfnc[1] = t*(sqrt(M_PI)*(a*a + 2.0*alpha*t)/(2.0*alpha*t) - 
2.0*a*(0.5*exp(-a*a/(4.0*alpha*t)) + sqrt(a*a/(alpha*t))*(a*a + 
2.0*alpha*t)*Gmma(gm[0],gm[1],a*a/(4.0*alpha*t))/(4.0*a*a))/(sqrt(alpha)*sqrt
(t)))/sqrt(M_PI); 
Origfnc[2] = sqrt(t)*(-(a*sqrt(M_PI)/(sqrt(alpha)*sqrt(t))) - 
sqrt(a*a/(alpha*t))*Gmma(-gm[0],gm[1],a*a/(4.0*alpha*t))/2.0)/sqrt(M_PI); 
return alpha*A0*(Origfnc[0] - Origfnc[1] - (a*Origfnc[2])/sqrt(alpha))/cond; 
} 
 
double granule::Temp(double r, double t){ 
if(t == 0.0) 
 return 0.0; 
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else{ 
 if(r == 0.0) 
  return OrigTemp(t); 
 else{ 
  if((r>0.0)&&(r<a)) 
   return InTemp(r,t); 
  else{ 
   if(r == a) 
    return SurfTemp(t); 
   else{ 
    if(r>a) 
     return OutTemp(r,t); 
   } 
  } 
 } 
} 
} 
 
double granule::MelTemp(double r, double t){ 
 double times; 
 double ReturnTemp; 
 for(int i =0; i<PulseVec.size(); i++){ 
  times = t - PulseVec[i]; 
/* 
This part here is basically the original MelTemp Function from FORTRAN, here 
it is looped over the number of pulses that are given 
*/ 
if( times < 0.0){ 
 ReturnTemp += 0.0; 
} 
else{ 

if(times > pulsedur) 
   ReturnTemp += Temp(r,times) - Temp(r,times-pulsedur); 
 else 
   ReturnTemp += Temp(r,times); 
} 
} 
return ReturnTemp; 
} 
 
BigTherm::BigTherm(char* configfilename){ 
boost::property_tree::ptree configfile; 
boost::property_tree::ini_parser::read_ini(configfilename, configfile); 
BoxLength=configfile.get<double>("Bigtherm.BoxLength"); 
BoxDepth=configfile.get<double>("Bigtherm.BoxDepth"); 
granny.a=configfile.get<double>("Bigtherm.GranularRadius"); 
xnum=configfile.get<int>("Bigtherm.xnum"); 
xmin=configfile.get<double>("Bigtherm.xmin"); 
xmax=configfile.get<double>("Bigtherm.xmax"); 
ynum=configfile.get<int>("Bigtherm.ynum"); 
ymin=configfile.get<double>("Bigtherm.ymin"); 
ymax=configfile.get<double>("Bigtherm.ymax"); 
znum=configfile.get<int>("Bigtherm.znum"); 
zmin=configfile.get<double>("Bigtherm.zmin"); 
zmax=configfile.get<double>("Bigtherm.zmax"); 
tnum=configfile.get<int>("Bigtherm.tnum"); 
tmin=configfile.get<double>("Bigtherm.tmin"); 
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tmax=configfile.get<double>("Bigtherm.tmax"); 
MelDens=configfile.get<double>("Bigtherm.MelDens"); 
rnum=configfile.get<int>("Bigtherm.rnum"); 
absorb=configfile.get<double>("Bigtherm.absorb"); 
irr=configfile.get<double>("Bigtherm.irr"); 
granny.pulsedur=configfile.get<double>("Bigtherm.pulsedur"); 
granny.alpha=configfile.get<double>("Bigtherm.alpha"); 
granny.cond=configfile.get<double>("Bigtherm.cond"); 
corspot=configfile.get<double>("Bigtherm.corspot"); 
spotsize=configfile.get<double>("Bigtherm.spotsize"); 
trans=configfile.get<double>("Bigtherm.trans"); 
improf=configfile.get<int>("Bigtherm.improf"); 
SeedFlag=configfile.get<int>("Bigtherm.SeedFlag"); 
PulseNum=configfile.get<int>("Bigtherm.PulseNum"); 
PulseSep=configfile.get<double>("Bigtherm.PulseSep"); 
PulseVec.push_back(tmin); 
for(int i =1; i<PulseNum; i++){ 
 PulseVec.push_back(PulseVec[i-1] + granny.pulsedur + PulseSep); 
} 
granny.PulseVec = PulseVec; 
//--------------------------------------------------------------- 
TempOutputFile=configfile.get<string>("Bigtherm.TempOutputFile"); 
DamageOutputFile=configfile.get<string>("Bigtherm.DamageOutputFile"); 
DamageInfo=configfile.get<int>("Bigtherm.DamageInfo"); 
numthreads=configfile.get<int>("BigTherm.numthreads",1); 
if(numthreads<1) 
 numthreads = 1; 
 
////////////////////////////////////////////////////////////////// 
//end loading 
////////////////////////////////////////////////// 
xsize = (xmax - xmin)/xnum; 
ysize = (ymax - ymin)/ynum; 
zsize = (zmax - zmin)/znum; 
tsize = (tmax - tmin)/tnum; 
melnum = 0; 
melnum = configfile.get<int>("Bigtherm.Melnum", 0); 
if(melnum == 0){ 
 MelDens=configfile.get<double>("Bigtherm.MelDens"); 
 melnum = MelDens * BoxLength*BoxLength * BoxDepth; 
} 
else 
 MelDens = 0; 
/* 
!*********************************************************************** 
! 
!     Determine the image profile on the retina.   
!     Use image profile technique determined by 
!     the value of improf: 
! 
!                  improf=0  <->  Gaussian Image 
!                  improf=3  <->  Top Hat Source 
!                  improf=4  <->  Annular Beam  
! 
!     The image diameter is then determined by the value of 
!     spotsize.  The amount of focusing 
!     that has taken place is a function of the retinal image diameter 
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!     as well. For annular beams, which assume a 37 per cent central 
!     obscuration, the diameter of the central obscuration, dobs, is 
!     spotsize*DSQRT(0.37). 
! 
!*********************************************************************** 
*/ 
 
dobs = spotsize * sqrt(0.37); 

if(improf ==  0)  
  Focus = 2 * (corspot*corspot) / (spotsize*spotsize); 

if (improf == 3) 
            Focus = (corspot*corspot) / (spotsize*spotsize); 
 if(improf == 4) 
           Focus = (corspot*corspot) / (spotsize*spotsize); 
           granny.A0 = 3 * irr * trans * Focus * (1 - (1 - exp(-2 * 
granny.a * absorb)*   (1 + 2 * granny.a * absorb))/(2 * granny.a*granny.a * 
absorb*absorb) )/ (4 * granny.a * granny.pulsedur); 

sigma = 8.0 / (spotsize*spotsize); 
 
      if (tmax < granny.pulsedur) 
          Qtot = granny.A0 * 4.0 * M_PI * granny.a*granny.a*granny.a * tmax / 
3.0; 
      else 
          Qtot = granny.A0 * 4.0 * M_PI * granny.a*granny.a*granny.a * 
granny.pulsedur / 3.0; 
  
vector<double> dummy; 
// computing weighting of the fluence for the placed granule 
if(SeedFlag == 0){ 
 MelPlacementFile=configfile.get<std::string>("Bigtherm.MelPlacementFile
"); 
 fstream posfile(MelPlacementFile.c_str()); 
 if(posfile.good()){ 
  double in; 
  string throwaway; 
  while(!posfile.eof()){ 
   posfile>>in; 
   dummy.push_back(in); 
   posfile>>in; 
   dummy.push_back(in); 
    posfile>>in; 
   dummy.push_back(in); 
   Pos.push_back(dummy); 
   dummy.clear(); 
   getline(posfile,throwaway); 
  } 
 } 
 else{ 
  cout<<"Placement File not found, using random seed"<<endl; 
  SeedFlag = 1; 
 } 
} 
double thermcon; 
if(SeedFlag == 1){ 
 
 srand(time(NULL)); 
 for( int j = 0; j<melnum; j++) { 
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  if(j== 0) 
   Pos.clear(); 
  ran1 = (rand() % 101)/100.0; 
  ran2 = (rand() % 101)/100.0;  
  ran3 = (rand() % 101)/100.0;  
  thermcon = (ran1 * BoxLength) - (BoxLength/2.0); 
  dummy.push_back(thermcon); 
  thermcon = (ran2 * BoxLength) - (BoxLength/2.0); 
  dummy.push_back(thermcon); 
  thermcon = (ran3 * BoxDepth) - (BoxDepth/2.0); 
  dummy.push_back(thermcon); 
  Pos.push_back(dummy); 
  dummy.clear(); 
 } 
} 
 
for( int j = 0; j<melnum; j++) { 
 
 r = sqrt(Pos[j][0]*Pos[j][0] + Pos[j][1]*Pos[j][1]); 
 
 if (improf == 0) 
               weight.push_back(exp(-sigma * r*r)); 
 else if (improf == 3){ 
  if (r <=  spotsize/2.0){ 
   weight.push_back(1.0); 
  } 
  else{ 
   weight.push_back(0.0); 
  } 
 } 
 else if (improf == 4){ 
  if( r > spotsize/2.0) 
   weight.push_back(0.0); 
  else {  
   if(r < dobs/2.0) 
    weight.push_back(0.0); 
   else 
    weight.push_back(1.0); 
  } 
 } 
} 
for(int i = 0; i<=tnum; i++){ 
 
 t = tmin + i * tsize; 
 rsize.push_back(0.0); 
 
        if (t <= 0.00001)  
            rsize[i] = (0.0005/rnum); 
         else 
            rsize[i] = (0.0005*(7.0 + log10(t))/rnum); 
  
 for(int j = 0; j<=rnum; j++){ 
  r = j * rsize[i]; 
         dummy.push_back(granny.MelTemp(r,t));  
         if(dummy[j] + Tbody > 100) 
   TempFlag = 1;  
 } 
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 VecTemp.push_back(dummy); 
 dummy.clear(); 
} 
// ---------  Check conservation of energy -------------- 
if (tmax <= 10.0E-6) 
 dx = 0.0005/rnum; 
else 
 dx = 0.0005*(7.0 + log10(tmax))/rnum; 
         Qkept = 0.0; 
 
for(int j =0; j<rnum; j++){ 
 Qkept = Qkept + VecTemp[tnum][j] * 4.1868 * 4.0 * M_PI * dx*dx*dx * 
(3.0*(j+1)*(j+1) - 3.0*(j+1) + 1.0) / 3.0; 
} 
Qlost = Qtot - Qkept; 
 
 if (TempFlag == 1) { 
  cout<<endl; 
  cout<<"///////////////////////////////////////////////"<<endl; 
  cout<<"----------------------------------"<<endl; 
  cout<<"      Warning . . . 100 degrees exceeded."<<endl; 
  cout<<"----------------------------------"<<endl; 
 cout<<"///////////////////////////////////////////////"<<endl; 
 } 
} 
 
double BigTherm::BigThermTempAt(double x, double y, double z, double t){ 
//WARNING this function will NOT give outputs for arbitrary t, simply the 
//closest t to the tsize given away from the min t. 
if((t<tmin)||(t>tmax)) 
 return -1; 
int l = (t-tmin)/tsize; 
double dist, ilook, Temper, SumTemp; 
SumTemp=0.0; 
 
//!-------- Summing effects of all granules--------------- 
omp_set_num_threads(numthreads); 
#pragma omp parallel for reduction(+:SumTemp) private(dist, ilook, Temper) 
for(int m = 0; m<melnum; m++){ 
 dist = sqrt((Pos[m][0]-x)*(Pos[m][0]-x) + (Pos[m][1]-y)*(Pos[m][1]-y) + 
(Pos[m][2]-z)*(Pos[m][2]-z)); 
 
//!--------- Individual Temps Interpolated From VecTemp Table---- 
 ilook = dist/rsize[l]; 
 if (ilook > rnum-1) { 
  Temper=0.0; 
 } 
 else{ 
  Temper = VecTemp[l][ilook] + (dist - ilook * rsize[l]) * 
(VecTemp[l][ilook+1] - VecTemp[l][ilook]) / rsize[l]; 
 } 
  
 SumTemp += weight[m] * Temper; 
 
}  
/* 
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Slight issues with noise, method only accurate to about a hundredth of a 
degree anyway so throwing out temperature rises on this magnitude cleans up 
the  
profiles a bit. 
*/ 
if(SumTemp < 1e-6) 
 return 0.0; 
 
return SumTemp; 
} 
 
//This function is a copy of the constructor if you want to run it again with 
the //different beam parameters 
 
void BigTherm::ReConstruct(void){ 
 double thermcon; 
 vector<double> dummy; 
 Pos.clear(); 
 srand(time(NULL)); 
 for( int j = 0; j<melnum; j++) { 
  if(j== 0) 
   Pos.clear(); 
  ran1 = (rand() % 101)/100.0; 
  ran2 = (rand() % 101)/100.0;  
  ran3 = (rand() % 101)/100.0;  
  thermcon = (ran1 * BoxLength) - (BoxLength/2.0); 
  dummy.push_back(thermcon); 
  thermcon = (ran2 * BoxLength) - (BoxLength/2.0); 
  dummy.push_back(thermcon); 
  thermcon = (ran3 * BoxDepth) - (BoxDepth/2.0); 
  dummy.push_back(thermcon); 
  Pos.push_back(dummy); 
  dummy.clear(); 
 } 
 
PulseVec.clear(); 
PulseVec.push_back(tmin); 
for(int i =1; i<PulseNum; i++){ 
 PulseVec.push_back(PulseVec[i-1] + granny.pulsedur + PulseSep); 
} 
granny.PulseVec = PulseVec; 
weight.clear(); 
for( int j = 0; j<melnum; j++) { 
 r = sqrt(Pos[j][0]*Pos[j][0] + Pos[j][1]*Pos[j][1]); 
 if (improf == 0) 
               weight.push_back(exp(-sigma * r*r)); 
 else if (improf == 3){ 
  if (r <=  spotsize/2.0){ 
   weight.push_back(1.0); 
  } 
  else{ 
   weight.push_back(0.0); 
  } 
 } 
 else if (improf == 4){ 
  if( r > spotsize/2.0) 
   weight.push_back(0.0); 

24 
Distribution A: Approved for public release; distribution unlimited. PA Case No: TSRL-PA-2015-0013.                           

 



 
 

  else {  
   if(r < dobs/2.0) 
    weight.push_back(0.0); 
   else 
    weight.push_back(1.0); 
  } 
 } 
} 
VecTemp.clear(); 
for(int i = 0; i<=tnum; i++){ 
 t = tmin + i * tsize; 
 rsize.push_back(0.0); 
        if (t <= 0.00001)  
            rsize[i] = (0.0005/rnum); 
         else 
            rsize[i] = (0.0005*(7.0 + log10(t))/rnum); 
  
 for(int j = 0; j<=rnum; j++){ 
 
  r = j * rsize[i]; 
         dummy.push_back(granny.MelTemp(r,t));  
         if(dummy[j] + Tbody > 100) 
   TempFlag = 1;  
 } 
 VecTemp.push_back(dummy); 
 dummy.clear(); 
 
} 
// -----------  Check Conservation of Energy ----------------- 
if (tmax <= 10.0E-6) 
 dx = 0.0005/rnum; 
else 
 dx = 0.0005*(7.0 + log10(tmax))/rnum; 
         Qkept = 0.0; 
 
for(int j =0; j<rnum; j++){ 
 Qkept = Qkept + VecTemp[tnum][j] * 4.1868 * 4.0 * M_PI * dx*dx*dx * 
(3.0*(j+1)*(j+1) - 3.0*(j+1) + 1.0) / 3.0; 
} 
Qlost = Qtot - Qkept; 
 
if (TempFlag == 1) { 
 cout<<endl; 
 cout<<"//////////////////////////////////////////////////"<<endl; 
 cout<<"---------------------------------------------"<<endl; 
 cout<<"      Warning . . . 100 degrees exceeded."<<endl; 
 cout<<"---------------------------------------------"<<endl; 
 cout<<"//////////////////////////////////////////////////"<<endl; 
} 
} 
 
void BigTherm::BigTherm2(void){ 
/* 
This will run the equivalent of the Original bigtherm2, and write it to the 
file listed for output in the config file. It writes the entirety of the box 
and the entirety of the given time. 
*/ 
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ofstream writefile(TempOutputFile.c_str(),ios::out); 
writefile<<"t\t"<<"x\t"<<"y\t"<<"z\t"<<"Temp"<<"\n"; 
for(int i = 0; i<xnum+1; i++){ 
 x = xmin + i * xsize; 
 for(int ii = 0; ii<ynum+1; ii++){ 
  y = ymin + ii*ysize; 
  for(int iii = 0; iii<znum+1; iii++){ 
   z = zmin + iii*zsize; 
   for(int iv = 0; iv < tnum+1; iv ++){ 
    t = tmin + iv * tsize; 
    double thing = BigThermTempAt(x,y,z,t); 
   
 writefile<<t<<"\t"<<x<<"\t"<<y<<"\t"<<z<<"\t"<<thing<<endl; 
   } 
  } 
 } 
} 
} 
 
/* 
This runs BigTherm2 for a given subset of the box. This can be used so that 
one does not output or calculate an unneeded data, i.e. points far out enough 
from the beam that there is no significant temperature rise 
*/ 
void BigTherm::BigTherm2(double outxmin, double outxmax, int outxnum, double 
outymin, double outymax, int outynum, double outzmin, double outzmax, int 
outznum){ 
ofstream writefile(TempOutputFile.c_str(),ios::out); 
writefile<<"t\t"<<"z\t"<<"x\t"<<"y\t"<<"Temp"<<"\n"; 
double outysize, outxsize, outzsize; 
outysize =(outymax - outymin)/outynum; 
outxsize =(outxmax - outxmin)/outxnum; 
outzsize =(outzmax - outzmin)/outznum; 
//using dummy variables in case one wants to use bigtherm2(void) afterwards 
for(int i = 0; i<tnum; i++){ 
        t = tmin + i * tsize; 
        for(int ii = 0; ii<outznum; ii++){ 
                z = outzmin + ii * outzsize; 
                for(int iii = 0; iii<outxnum; iii++){ 
                        x = outxmin + iii*outxsize; 
                        for(int vi = 0; vi<outynum; vi++) { 
                                y = outymin + vi*outysize; 
                                double thing = BigThermTempAt(x,y,z,t); 
                                
writefile<<t<<"\t"<<z<<"\t"<<x<<"\t"<<y<<"\t"<<thing<<"\n"; 
                        } 
                } 
        writefile<<"\n"; 
        } 
} 
 
} 
void takatadamage(char* configfilename){ 
 
 int DamFlag; 
 int xnum, ynum, znum, tnum; 
 double Pi, BoxLength, BoxDepth, a, MelDens; 
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 double xmin, xmax, xsize; 
 double ymin, ymax, ysize; 
 double zmin, zmax, zsize; 
 double tmin, tmax, tsize; 
 vector< double > Temp; 
 double c11, c21, c12, c22; 
 double irr,pulsedur,E; 
 double x, y, z, t, Tbody, rnum, absorb; 
 double TempA; 
 double spotsize,spotsizex,spotsizey; 
 float Term1,Term2; 
 float Sum1, Sum2; 
 float Integrand; 
 float Damage; 
 int old; 
 string inputfile; 
 string outputfile; 
 boost::property_tree::ptree configfile; 
 boost::property_tree::ini_parser::read_ini(configfilename, configfile); 
 string OutputFile; 
 
//-----initializing the output file 
 
 outputfile = configfile.get<string>("Bigtherm.DamageOutputFile"); 
 fstream out(outputfile.c_str()); 
 out.open(outputfile.c_str()); 
 out<<"t\t"<<"x\t"<<"y\t"<<"z\t"<<"Damage\t"<<endl; 
 
//!-----Initializing constants: 
 
 Tbody=37.0; 
 DamFlag=0; 
 c11=149.0; 
 c12=50000.0; 
 c21=242.0; 
 c22=80000.0; 
 
//-----Reading input variables------- 
 
 BoxLength=configfile.get<double>("Bigtherm.BoxLength"); 
 BoxDepth=configfile.get<double>("Bigtherm.BoxDepth"); 
 xnum=configfile.get<int>("Bigtherm.xnum"); 
 xmin=configfile.get<double>("Bigtherm.xmin"); 
 xmax=configfile.get<double>("Bigtherm.xmax"); 
 ynum=configfile.get<int>("Bigtherm.ynum"); 
 ymin=configfile.get<double>("Bigtherm.ymin"); 
 ymax=configfile.get<double>("Bigtherm.ymax"); 
 znum=configfile.get<int>("Bigtherm.znum"); 
 zmin=configfile.get<double>("Bigtherm.zmin"); 
 zmax=configfile.get<double>("Bigtherm.zmax"); 
 tnum=configfile.get<int>("Bigtherm.tnum"); 
 tmin=configfile.get<double>("Bigtherm.tmin"); 
 tmax=configfile.get<double>("Bigtherm.tmax"); 
 MelDens=configfile.get<double>("Bigtherm.MelDens"); 
 rnum=configfile.get<int>("Bigtherm.rnum"); 
 old=configfile.get<int>("Bigtherm.old"); 
 absorb=configfile.get<double>("Bigtherm.absorb"); 
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//!-----Calculating necessary parameters-------- 
 
 xsize = (xmax - xmin)/xnum; 
 ysize = (ymax - ymin)/ynum; 
 zsize = (zmax - zmin)/znum; 
 tsize = (tmax - tmin)/tnum; 
/* 
!*********************************************************************** 
!     Calculate Damage(x,y,z,t) 
!*********************************************************************** 
*/ 
// initializing input file 
 inputfile = configfile.get<string>("Bigtherm.tempfile"); 
 ifstream damagefile(inputfile.c_str()); 
 double dummy; 
 string line; 
 int dam; 
if( old ==0) 
 getline(damagefile, line); 
 
//!------Stepping in x direction------------ 
 
 for(int i=0;i<xnum+1;i++){ 
  x = xmin + i * xsize; 
 
//!---------Stepping in y direction------------ 
          
  for(int ii = 0; ii<ynum+1; ii++){ 
   y = ymin + ii * ysize; 
 
//!------------Stepping in z direction------------- 
 
   for(int iii = 0; iii<znum+1; iii++){ 
    z = zmin + iii * zsize; 
 
//!---------------Stepping in time--------------------- 
 
    for(int iv = 0; iv<tnum+1; iv++){ 
     t = tmin + iv * tsize; 
 
     if(old ==1){ 
      damagefile >> dummy; 
      Temp.push_back(dummy); 
     } 
 
     if(old == 0){ 
      damagefile 
>>dummy>>dummy>>dummy>>dummy>>dummy; 
      Temp.push_back(dummy); 
     } 
    } 
//!------------Simpson's Rule for Damage Integral---------------- 
 
Sum1=0.0; 
Sum2=0.0; 
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if(Tbody + Temp[0] < 50.0)  
 Term1=exp(c11 - c12/(273 + Tbody + Temp[0])); 
else 
 Term1=exp(c21 - c22/(273 + Tbody + Temp[0])); 
 
if(Tbody + Temp[tnum-1] < 50.0) 
 Term2=exp(c11 - c12/(273 + Tbody + Temp[tnum-1])); 
else 

Term2=exp(c21 - c22/(273 + Tbody + Temp[tnum-1])); 
 
for(int iv =1; iv<tnum; iv+=2){ 
 if ((Tbody + Temp[iv]) < 50.0) 
  Integrand=exp(c11 - (c12/(273 + Tbody + Temp[iv]))); 

else 
  Integrand=exp(c21 - c22/(273 + Tbody + Temp[iv])); 

Sum1=Sum1+Integrand; 
} 
 
Sum1*=4.0; 
 
for(int iv =2; iv<tnum-1; iv +=2){ 
 if ((Tbody + Temp[0]) < 50.0) 
  Integrand = exp(c11 - (c12/(273 + Tbody + Temp[iv]))); 
 else 
  Integrand=exp(c21 - c22/(273 + Tbody + Temp[iv])); 
  Sum2+=Integrand; 
} 
 
Sum2*=2.0; 
 
    Damage=tsize*(Term1 + Term2 + Sum1 + Sum2)/3.0; 
 
    if(Damage >= 1.0) 
     dam = 1; 
    else 
     dam = 0; 
 
 cout<<x<<"\t"<<y<<"\t"<<z<<"\t"<<Damage<<endl; 
     
    if (Damage >=1.0) 
     DamFlag=1; 
    Temp.clear(); 
  } 
 } 
} 
 out.close(); 
 damagefile.close(); 
} 
void BigTherm::TakataDamage(void){ 
 
 int DamFlag; 
 vector< double > Temp; 
 double c11, c21, c12, c22; 
 double x, y, z, t; 
 double TempA; 
 double spotsize,spotsizex,spotsizey; 
 float Term1,Term2; 
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 float Sum1, Sum2; 
 float Integrand; 
 float Damage; 
 int old; 
 
//-----initializing the output file 
 
 ofstream DamageOut(DamageOutputFile.c_str(),ios::out); 
 ofstream TempOut(TempOutputFile.c_str(),ios::out); 
 
 DamageOut << "x\t" << "y\t" << "z\t" <<"Damage\t" <<endl; 
 if(DamageInfo == 1){ 
  TempOut<<"t\t"<<"x\t"<<"y\t"<<"z\t"<<"Temp\t"<<endl; 
 } 
 
//!-----Initializing constants: 
 
 Tbody=37.0; 
 DamFlag=0; 
 c11=149.0; 
 c12=50000.0; 
 c21=242.0; 
 c22=80000.0; 
 
//!-----Calculating necessary parameters-------- 
 
 xsize = (xmax - xmin)/xnum; 
 ysize = (ymax - ymin)/ynum; 
 zsize = (zmax - zmin)/znum; 
 tsize = (tmax - tmin)/tnum; 
/* 
!*********************************************************************** 
!     Calculate Damage(x,y,z,t) 
!*********************************************************************** 
*/ 
 
// initializing input file 
 double dummy; 
 int dam; 
 
//!------Stepping in x direction------------ 
 
 for(int i=0;i<xnum+1;i++){ 
  x = xmin + i * xsize; 
 
//!---------Stepping in y direction------------ 
 
  for(int ii = 0; ii<ynum+1; ii++){ 
   y = ymin + ii * ysize; 
 
//!------------Stepping in z direction------------- 
 
   for(int iii = 0; iii<znum+1; iii++){ 
    z = zmin + iii * zsize; 
 
//!---------------Stepping in time--------------------- 
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    for(int iv = 0; iv<tnum+1; iv++){ 
     t = tmin + iv * tsize; 
     dummy = BigThermTempAt(x,y,z,t); 
     Temp.push_back(dummy); 
     if(DamageInfo == 1) 
  
TempOut<<t<<"\t"<<z<<"\t"<<x<<"\t"<<y<<"\t"<<dummy<<endl; 
    } 
//!------------Simpson's Rule for Damage Integral---------------- 
 
 Sum1=0.0; 
 Sum2=0.0; 
 
 if(Tbody + Temp[0] < 50.0)  
  Term1=exp(c11 - c12/(273 + Tbody + Temp[0])); 
 else 
  Term1=exp(c21 - c22/(273 + Tbody + Temp[0])); 
 
 if(Tbody + Temp[tnum-1] < 50.0) 
  Term2=exp(c11 - c12/(273 + Tbody + Temp[tnum-1])); 
 else 
  Term2=exp(c21 - c22/(273 + Tbody + Temp[tnum-1])); 
 
for(int iv =1; iv<tnum; iv+=2){ 
 
 if ((Tbody + Temp[iv]) < 50.0) 
  Integrand=exp(c11 - (c12/(273 + Tbody + Temp[iv]))); 
 else 
  Integrand=exp(c21 - c22/(273 + Tbody + Temp[iv])); 
 Sum1 = Sum1+ Integrand; 
} 
 Sum1*=4.0; 
for(int iv =2; iv<tnum-1; iv +=2){ 
 if ((Tbody + Temp[0]) < 50.0) 
  Integrand = exp(c11 - (c12/(273 + Tbody + Temp[iv]))); 
 else 
  Integrand = exp(c21 - c22/(273 + Tbody + Temp[iv]));    
 Sum2+=Integrand; 
} 
 
 Sum2*=2.0; 
 Damage=tsize*(Term1 + Term2 + Sum1 + Sum2)/3.0; 
 if(Damage >= 1.0) 
  dam = 1; 
 else 
  dam = 0; 

DamageOut<<x<<"\t"<<y<<"\t"<<z<<"\t"<<dam<<endl;   
 if (Damage >=1.0) 
  DamFlag=1; 
 Temp.clear(); 
  } 
 } 
} 
 DamageOut.close(); 
 TempOut.close(); 
 
} 
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7.4 Input File 
 
; Text preceeded by or ";" are comments and will not be read by           
; boost_property_tree parser.  This example will generate a temperature    
; profile and damage spot from a given seed. 
 
[Bigtherm] 
BoxLength= 0.0040 
BoxDepth = 0.0014 
GranularRadius= 0.0001 
xnum=40 
xmin=-0.0020 
xmax=0.0020 
ynum=40 
ymin=-0.0020 
ymax=0.0020 
znum=2 
zmin=-0.0007 
zmax=0.0007 
tnum=20 
tmin=0.0 
tmax=0.002 
Melnum= 
MelDens=8.33e9 
rnum=500 
absorb=4000.0 
 
;0.0040 0.0014 .0001  # BoxLength, BoxDepth, Granular Radius(a)  
;40 -.0020 .0020  # Number of x steps(xnum), xmin, xmax 
;40 -.0020 .0020  # Number of y steps(ynum), ymin, ymax 
;2 -.0007  .0007  # Number of z steps(znum), zmin, zmax 
;20 0.0 .002    # Number of time steps(tnum), tmin, tmax 
;8.33D9 500     4000.0  # MelDens, rnum, absorb  
 
 
;  Comments here will not be read by C++ 
; 
;   1) Input all distances in cm and all times in sec. 
;      Melanin density(MelDens) in granules/cm**3. 
;      Melanin absorption coefficient(absorb) in cm**-1. 
;      All calculations are done in cgs units. Some energies are input in 
;      Joules; but these are converted to calories before calculation. 
; 
;   2) Melanin Parameters 
;       A. Melanosome (or granular) radius is roughly 1 micron. This is 
;          a variable input parameter. 
;       B. Melanosomes are distributed through a rectangular volume whose 
;          x,y dimensions are BoxLength and z dimension is BoxDepth. 
;          Granules are randomly distributed through this space using a 
;          Cartesian coordinate system with origin at the geometric center 
;          of the volume. Granular volumes do not overlap. 
;       C. The volume of an RPE cell is independent of the melanin dist. 
;          volume. It is estimated to be 20 x 20 microns cross section(x,y) 
;          and 15 microns depth(z) = 6 x 10**-9 cm**3. The portion of the 
;          RPE cell volume that contains melanosomes is Vm = 20 microns x 
;          20 microns x BoxDepth. 
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;       D. The melanin number density, Nm, is the number of granules/RPE 
cell. 
;          The melanin volume density, MelDens, may be computed from Nm 
using: 
;            MelDens(granules/cm**3) = Nm(granules/cell)/Vm(cm**3/cell). 
;          For example, BoxDepth = 15 microns and Nm = 120 granules/cell 
gives 
;          Vm = 6E-9 cm**3/cell and MelDens = 2E10 granules/cm**3. 
;       E. The number of granules in the whole dist. vol.(melnum) is: 
;            melnum = MelDens * BoxLength**2 * BoxDepth 
;          To avoid excessive cpu time, this number should not exceed 20,000. 
;          (The code is currently hard-wired for arrays of dimension 20,000). 
; 
;   3) The single granule temperature distribution, T(r,t) is calculated 
;      using a spherical coordinate system independent of the Cartesian 
;      system used for melanin dist. The calculation is radially symmetric 
;      and is done for rnum radial steps and tnum time steps. Note that 
;      T(r,t) is analytically calculated and is not the product of a temporal 
;      summation or a spatial stepping algorithm. Each value can thus be 
;      calculated independently of values at other positions and times. 
; 
;   4) The final temperature distribution in the retina is calculated using 
;      the same Cartesian coordinate system as for melanin dist. The value 
;      T(x,y,z,t) at a certain arbitrary position and time is the linear 
;      superposition of the contributions of all the granules T(r1,t)+T(r2,t) 
;      +T(r3,t)+... at that time, where r1,r2,r3,etc. are the radial 
distances 
;      from each granule to (x,y,z). The value T(x,y,z,t), like T(r,t), can 
;      be calculated independently for each position and time. 
; 
;   5) Since each T(x,y,z,t) is independently calculated, the space and time 
;      grid chosen for the temperature calculation is in theory arbitrary. 
;      Note that the number of steps in each dimension is 
xnum,ynum,znum,tnum; 
;      whereas the actual number of grid points is xnum+1,ynum+1,znum+1, and 
;      tnum+1. The do loops in the code go from 0 to xnum,ynum,etc. and not 
;      from 1 to xnum+1,etc. 
;   6) The number of x,y,& z grid points is only constrained by the spatial 
;      resolution needed for visualization. Max and min values may be inside  
;  or outside the melanin volume. They need not be symmetric about the    
;  origin. They are not tied to the maximum value of r used in 
calculating ;  T(r,t) for one granule. For r>rmax the contribution of 
that granule is ;  simply 0. 
; 
;   7) Typically xnum & ynum should be set to give at least 1 step/micron. A 
;      minimum of znum+1 = 3 should be used where the 3 z slices represent 
the 
;      top, middle, and bottom layers of the RPE. More z steps may be needed    
;  to accurately construct a side view of the damage volume or to         
;  accurately account for true shadowing. 
; 
;   8) The number of time steps tnum is constrained by the requirements of 
;      the damage calculation. Temporal resolution must be great enough to    
;  give convergance of the Arrenhius integral over the time-temperature        
;  history.  Typically tnum of about 20-40 is sufficient. Unlike the      
;  spatial grid the temporal calculation is limited to those time values  
;      for which T(r,t) has previously been calculated. 
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; 
;   9) The minmum, tmin, is always 0 (before the pulse). The max value can be 
;      inside or outside the pulse interaction time, if the only thing 
desired 
;      is the temperature distribution. For damage calculations to be 
accurate 
;      however, tmax must be large enough that the tissue has cooled to 
normal 
;      (37 C). For most cases the pulsewidth plus 2 msec should be 
sufficient. 
;      Very long pulses (on the order of seconds) or very large spots may 
;      reqiuire more than 2 msec cooling time and adjustments may be needed. 
;      If tmax is large, the energy conservation report will likely show 
;      that much energy has been lost.  This simply means that energy has 
;      had time to move out of the RPE and into the surrounding tissue. 
; 
;   10) It is not a good idea to run this model for times, t < 1 microsec. 
;      (The pulse duration can be as short as you desire, but in the            
;       ultrashort case, don't ask for a temperature profile until well after 
;   the pulse has expired.  We do not expect that thermal mechanisms are 
;   relevant for ultrashort anyway.) 
; 
;   11)The Arrhenius Integral damage calculations are done using a Simpson's 
;      Rule Integrater. The coefficients are from either Takata or Welch. 
; 
;   12)Image diameter- The BoxLength should be greater than or equal to the 
;      transverse beam diameter of the laser; i.e., the beam should encounter 
;      melanin everywhere it falls on the retina. It is probably best if 
twice 
;      the laser diameter is used, so that all the beam is covered out to low 
;      intensities; however, this not strictly necessary for validity. 
; 
;   13)Run Time - There are basically four parts to the thermal code: 
; 
;        i. Random granule placement - varies with melnum. 
;       ii. Depth averaging or shadowing - varies with melnum. 
;      iii. T(r,t) single granule calc. - varies with tnum. 
;       iv. T(x,y,z,t) mult. gran. calc.- varies with xnum, ynum, znum, tnum, 
;  melnum 
; 
;      Parts i,ii, and iii do not take a high percentage of cpu time even at 
;      fairly high values of melnum and tnum. Almost all cpu time is spent on 
;      T(x,y,z,t) which is linear in xnum,ynum,znum,tnum, and melnum. 
 
 
;information formerly contained in the inp2 files 
irr=3.0e-5 
;(irr)Corneal Fluence in J/cm**2. 
pulsedur=3.0e-6 
; (pulsedur)Pulse Duration in sec 
alpha=0.00132798 
; (alpha)Thermal Diffusivity of Medium in cm**2/sec. 
cond=0.00556 
; (cond)Thermal Conductivity of Medium in J/cm-C-sec. 
corspot=0.7 
; (corspot)Beam Diameter at cornea in cm. 
spotsize=0.0022 
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; (spotsize)Retinal Image Diameter at 1/e**2 points in cm. 
trans=1.0 
; (trans)Fraction of pulse energy transmitted to retina. 
improf=0 
; (improf)Image Type[0=Gaussian, 3=Top Hat, 4=Annular]. 
SeedFlag=1 
; SeedFlag [0=Fixed Seed, 1 = Random Seed from time() function]. 
 
;   1) Input all distances in cm and all times in sec. 
;      All calculations are done in cgs units. Some energies are input in 
;      Joules; but these are converted to calories before calculation. 
; 
;   2) Corneal beam diameter is used to compute the Total Interocular 
;      Energy (multiplying area by Corneal Fluence).  Therefore, if 
;      the beam is larger than the pupil, the pupil diameter should be used. 
; 
;   3) The average focusing power of the eye can be determined by: 
;      Retinal Fluence / Corneal Fluence = (Corneal Diam / Retinal Diam)**2. 
;      For 10**5, you might choose Corneal Diam = .7 and Retinal Diam = 
.0022. 
; 
;   4) Fraction of pulse energy transmitted is a function of wavelength and 
;      may be obtained from the literature.  (See Maher) 
; 
;   6) Values of thermal diffusivity and conductivity for water: 
;            0.00132798 cm**2/sec and 0.00556 J/cm-C-sec 
;file for explicit placement of melinen granules 
MelPlacementFile=ExampleMelPlacementFile.txt 
 
TempOutputFile=ExampleOutputTempFile.temp 
;name for output temperature file, the file extention is arbitrary 
;output will be formated time, x, y, z, temperature. units are the same as 
above 
DamageOutputFile=ExampleOutputDamageFile.dam 
;name for output damage file, the file extention is arbitrary,  
;output will be x, y, z then either a 0 or 1 
;0 indicates no thermal damage has been done, 1 indicates damage has been 
done 
PulseNum=1 
;The number of pulses long an exposure is, defauts to 1 if none is given 
PulseSep=0.001 
;the time in seconds between each pulse. 
tempfile=ExampleInputTempFile.temp 
;If you're using the simple re-implementation of the takata model, this is 
the temperature file you need for that.  
old=0 
;this was an option that's only needed in the re-implementation of the takata 
model, then you need to set this flag to 1 in order to use the old fortran 
temp files. 
DamageInfo=1 
;set this flag to 1 if you want the temperature file generated for the damage 
to be output as well 
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